
Funding Flow:
The Middle Ground of Agile Budgeting
By Roland Cuellar, LitheSpeed LLC and Tom Paider, Nationwide Insurance

2

Funding Flow–

Introduction

01
—

by Evan Leybourn

The profession of management accounting has continued to evolve ever since the modern concept of budgeting was defined by James
McKinsey in 1922. Each new practice is built on what has come before in order to serve the needs of the companies of the time.

In today’s economy, companies are seeking agility. For almost the first time in history, customers having more information than the
firms trying to sell products and services to them. In turn, companies need to adopt a new mindset; to be truly customer-centric. To
put the needs of the customer above the short-term needs of the shareholder – which, in turn, ensures that the long-term needs of
the shareholder are met.

These companies (which, as you are reading this, hopefully includes your company) are seeking new ways of responding to the
changing needs of their customers. In technology team concepts we saw Agile emerge. In product teams, concepts like Design Thinking
are becoming popular. HR and Marketing have their own responsive and agile ways of thinking and working. And finance teams are
no different. Over the last 20 years, we are seeing new management accounting practices emerge to support this new mindset.

But, like all change, it takes time.

What you are reading here is a first step; a middle ground of Agile budgeting. What Roland and Tom have created here is helpful,
insightful, and practical. This is just the start of your journey and I ask you to take these first steps with an open mind and a willingness
to continue to evolve – just as every accountant since 1922 has done.

-Evan Leybourn, Founder, Business Agility Institute

3

The Middle Ground of Agi le Budgeting

According to the Business Agility Institute's Global Business
Agility Report from 2019, there are three clear organizational
predictors of business agility: flexible funding models,
organizing work around value streams, and the drive for
relentless improvement. Much has been written about
the power of value stream management and creating a
culture of continuous improvement. Less has been written
about the “how” of moving to flexible funding, particularly
the application of these models in companies with a long
history of annual project funding cycles.

As these organizations attempt to pivot away from fixed-
constraint projects towards product lines and value-
streams, they find that traditional project funding models
are incongruous with agile methods. Flexible funding
models that allow teams to quickly pivot in reaction to
internal and external feedback continue to be much sought
after but seldom seen in the agile community.

We have seen a number of companies successfully move
towards flexible funding models through their product-
centric transformations and attempt to do away with
project-based funding in favor of flexible funding. But the
truth is that for most organizations, this is just a bridge
too far. Such a change would involve a radical change in
funding, governance, estimation, and even accounting.
To be successful, an intermediate step is needed… a way
that maintains some of the current financial model while
allowing for the benefits of agility. In this paper, we will
show how an intermediate approach that both maintains
the current project-based model and a flexible agile model
can co-exist.

Larger organizations will struggle with adopting an entirely
new funding model in line with Agile ways of working. They
have questions like:

• How do we justify project approvals and how do we budget
these efforts?
• What financial inputs are required?
• How are the projects financially tracked once underway?
• How will we know what we are going to get and when?

Of course, the traditional approach most organizations use
is a rigid funding model that locks in scope, timeframe,
and budget in the hope of creating predictable financial
outcomes. The sad truth, however, is that outcomes are
seldom predictable. The original schedules are rarely hit,
and substantial budget overruns are commonplace. Worse
still, the business outcomes are not achieved at the level

that was desired, even if most of the requirements were
delivered. In fact, it is very common for the original business
goals to be completely lost as the focus turns to locking
down and tracking detailed scope and cost. Traditional
approaches attempt to create highly precise views of
delivery that are most often very inaccurate in terms of both
project outcome and business outcome.

A principal flaw in this model is that we can know, a priori,
exactly what the user will want and use, and that through
their usage of these features, we will achieve our desired
business outcomes. Even the most advanced product
development organizations have a long history of significant
product failures:

• Apple Newton
• Apple Lisa
• Apple eMate
• Google Nexus
• Google Plus
• Google Inbox
• Google Picassa
• Microsoft Phone
• Microsoft Zune
• Windows Me
• Microsoft Cortana
• The list goes on and on and on

If the richest and most experienced product development
firms on the planet cannot reliably predict what consumers
will value, and what the resulting business benefits will be,
then it seems somewhat ridiculous to think that we, using
our long, linear, outdated, budgeting model, can do better.

More flexible approaches are key to creating an environment
where we can quickly develop, deploy, learn, and adjust in
order to iterate towards a winning solution. But for most
organizations, this is simply too big of a change to the status
quo. It is too great a leap to go from rigid scope-bound
budgets and plans to what is sometimes perceived to be an
open checkbook.

So where is the middle ground?

Rather than a wholesale change of the funding model, there
is a path forward that allows organizations to both maintain
their project model and much of their funding model while
still achieving greatly improved organizational agility.

4

Funding Flow–

Outcome-based
Funding
Organizations can continue to fund projects but they should fund
business outcomes instead of detailed scope-based projects.

In this model, we would spend $XM in order to achieve
some desired business outcomes such as account
growth, cost reduction, compliance with a regulation,
parity with a competitor, etc. In the outcome-based
model, we still have a project, but the primary controls
are around the business outcome, the budget, and
the timeframe, not the requirements' scope. For
example, we might say that we need the following:

– Reduce the cost of processing X by 15%
– To be achieved by the end of the year
– With a budget of $2.5M

Organizations do not have to abandon projects entirely
to achieve business agility– they can still have projects
with a defined & measurable business-outcome target, a
timeframe, and a budgeted dollar amount. The important
difference being we allow the requirements scope to flex to
meet the business needs. This gives the flexibility to add/
change/remove requirements as needed to achieve the
outcome. In this model, the business outcome is “the thing”!

Paired with early delivery of functionality and an
experimental mindset, we should start to see early
financial results– cost savings, revenues, new users,
lower dropout rates, etc. If we don’t, we can learn
from the results and quickly pivot to functionality and
features that will provide results. And these actual
results can be measured against the monies spent to
date to see if the financials are still making sense.

But How Do I Estimate in this Model?

There are several ways that one could come up
with plausible estimates in this model: Bottom-
up and Top-Down. Let’s start with Top-Down.

Top-Down Estimation of Cost

In the Top-Down estimation method, we can work
backwards from a desired financial goal in order
to develop a business case. Imagine that we have
done the market or cost-savings analysis and

5

The Middle Ground of Agi le Budgeting

some product or project stands to achieve $5M in new
revenues or cost savings for us over some timeframe.

The next step would be to get a rough budget for this work that
would fit within our budgetary constraints or meet some internal
financial ROI hurdle. Maybe we only have a certain amount
available to spend on this. Or perhaps that in order to justify the
investment, we might be willing to spend up to $3M in order to get
the anticipated $5M. Either way, we can get a top-down budget for
this investment without having to know the detailed requirements.

But how do we know if we can achieve the outcome with
this top-down imposed budget? We might need to do
a quick rough estimation of some of the key high-level
requirements. The trick would then be to NOT lock in those
requirements but simply use them as budgetary placeholders.
As we learn more, actual requirements and solutions would
evolve and subsequently update the business case.

The requirements and estimates that we come up with are
used simply as a gauge, not as a strict mandate. What is
contracted is the outcome and the budget and the timing.
We will let the requirements' specifics flex so that we can
find the most impactful and economical solutions.

But How Would We Estimate the Top-Down Cost?

By now we are back to having to estimate high-level requirements.
How can we do that without knowing the details? Estimating
requirements in hours is immensely time consuming and often
grossly inaccurate. While it does give the illusion of precision, that
precision is usually false. This is why our estimates are so often off
by 100% or more. But there are alternatives that are much faster
and easier and that if used conservatively, may be more accurate.

Agile Teams are Fixed Cost over the Medium Term

Agile teams are cross-functional and stay together over
the medium term. The ramifications of this are huge from
a cost estimation standpoint! Imagine this scenario:

1. A 10-person agile team has 4 developers, 2 testers, 2
analysts, a database person, and a scrum master.
2. Some folks make more and some make less but on
average, the blended cost per hour is $150 all-in.
3. Each sprint is 2 weeks long or 80 working hours

In this example, the cost of the team, per sprint, is 10 * 80 * $150
= $120,000. There are two important pieces of information
here– the cost and timeframe. Every 2 weeks costs $120,000.

As we estimate work, let’s get away from huge spreadsheets
of people and titles and rates and allocation percentages
and all of that. Instead, estimate in team-sprints.

For example, we might estimate that the candidate requirements
would require 2 agile teams for 10 sprints plus or minus 2 sprints.

Cost : 2 teams * 10 sprints * $120,000/sprint = $2.4M
Time: 10 sprints * 2 weeks/sprint = 20 weeks
Variance: 2 sprints which is 4 weeks and up to $480,000

So now we have a defined business outcome, a cost, and a
timeframe, and an idea of the uncertainty. This way of estimating
is fast and easy and if you really do have standing teams (which you
definitely should!), then you will have a pretty good idea of what
each team can actually do based upon real data. Using that data
and a predisposition to quick, early delivery allows the dual benefit
of more accurate financial forecasting as well as quick stress-
testing of how the delivered features meet the expected outcome.

An important outcome of this approach is that with a
budget in place and a desired outcome expected, teams
will have to choose solutions that are both impactful and
relatively economical. They will be forced to consider “best
bang for the buck” solutions that make financial sense.

We can compare this rough estimate against our top-down
budget and see if we are in the ballpark. This estimate
might not be perfect, but given the rate at which our
current methods miss the mark on budgets, it is probably
no worse but is a lot faster and easier to perform.

If the fast and easy top-down approach will not
work in your organization, then there is the less
desirable, but effective bottom-up approach.

Bottom-Up Estimation

In a bottom-up approach, we can develop more detailed
requirements that we think will be needed in order to achieve
the outcome. We can then estimate the requirements in the
usual way. But the estimates are used only to get ballpark cost
and duration numbers, not as a commitment to deliver those

6

Funding Flow–

particular detailed requirements. Some of the ‘requirements’
may be throw-away! In this model, the requirements are nothing
more than our current ideas on how to solve the problem. We
may - and probably should - have new and better ideas once we
start really getting into the project and begin to learn more. We
can use our current best guess at the requirements to get the
numbers we need and then basically throw the requirements
away– or at least allow them to change as we learn more. Working
this way, we get a cost estimate and a schedule estimate. We
still have our targeted business outcome, but we are not going
to measure progress as a function of delivering requirements.
We are going to measure progress as a function of delivering
incremental business results. But more on that later.

Why do we prefer top-down estimation? Because it is significantly
faster and easier and in most cases, will provide the necessary level
of control. Development of detailed requirements and estimates,
only to then possibly abandon those requirements once we see
that they are not achieving the outcome is potentially a huge
waste of time and money. And given that our ability to accurately
estimate is bad at best, the outcome is likely to be unsatisfying.

We Do This All the Time!

Think of a simple grocery shopping example. You are throwing
a party and you need to estimate the food costs. You might
budget for certain snacks, drinks, entrees, desserts, etc, etc.
And you might use specific numbers to help you come up with
more accurate estimates. For example, you might budget for
10 bottles of wine at $39.99 each and so on and so forth. These
specifics all add up to an overall budget that you decide you can
live with. You get to the store and find that some wines which
are just as good happen to be on sale and that they cost less. You
then find that something else you wanted is out of stock forcing
you to buy something that costs a bit more. We are all totally
fine with this approach and we use it every day to manage our
own money. The goal is not to walk out of the store with your
exact shopping list, the goal is to have a well- stocked party
that is within your budget. It would be ridiculous to rigidly stick
to the shopping list in the face of the new and more accurate
information that you receive when you arrive at the grocery store.

We can do the same thing with requirements. We can estimate
requirements for budgetary purposes to help us establish
an overall cost target, but it may turn out later that another
requirement that we didn’t anticipate can get us a better outcome
for less money, and that some requirements we thought we

needed might not be necessary at all. So, as long as we hit our
business outcome, we should be good. In fact, I’d be very inclined
to say that we have a much better chance of actually achieving the
outcome using this model and we can often do it for less money.

Too Much Focus on What It Costs and Not Enough on
What It’s Worth!

Here is a common pattern that we see frequently. There is a huge
amount of time and effort that goes into coming up with the
precise cost of a project to within some ridiculous percentage of
accuracy but not nearly the same level of effort in what the project
is worth. It is common to see fuzzy business upsides, hockey stick
projections of growth, financial benefits that are not planned
to materialize for years, sloppy consumer behavior studies, and
dubious economics at best. Large sums are often spent simply
because an important stakeholder is demanding some capability
and not because it makes good financial sense. Also, because our
financial planning cycle is so long, we justify the lack of rigor in the
upside by saying “we don’t have time” and “we know our business
and we know what our customers want”. However, we can probably
agree that given the huge number of projects that fail to meet their
stated objectives, we obviously don’t know our customers much
at all. At least not to the level that we are able to monetize their
behaviors. In our experience, we need to focus much more on the
value of the work, why we are doing it, and how we will measure
the outcome in real terms. Basically, there is way too much focus
on the “I” part of the ROI and not nearly enough on the “R”. In the
end, a highly precise investment estimate divided by a fuzzy return
is still fuzzy at best. The result is poor investment decisions that
utilize enormous sums of money and tie up our limited resources
only to result in mediocre levels of business improvement.

How Do We Manage Changing Scope

Either way you go, top-down or bottom-up, our model calls for
scope to be defined more loosely. If a new requirement comes
in that helps us to achieve the agreed upon and funded business
outcome, then it is fair play. And if a requirement comes in that
does not directly tie to the business outcome, then it is not in scope.
And even if a requirement or request might help to achieve the
outcome it may still be rejected if there is a simpler, cheaper way
to achieve the outcome. This sort of thinking can greatly cut costs
since most projects have many requirements that are hitching a
free ride and do not clearly tie to measurable business outcomes.

In this model, requirements will evolve and change. In fact,

7

The Middle Ground of Agi le Budgeting

that would be evidence that the process is working! We
should change our requirements as we learn more about how
the customer behaves, about the economics of this situation,
and about the outcomes of our technical solutions. Changes
in requirements do not break our governance/control model
because our model isn’t based on requirements– it is based on
outcomes. The change management issue then becomes one
of communications and alignment and transparency. Various
PMO meetings, customer meetings, backlog prioritizations,
team planning meetings, backlog reports, and other avenues
exist for maintaining communications and managing
change so that we can stay aligned. Alignment is around
the goal and we need to be flexible to meet that goal.

But if there is no fixed scope, then how do we
measure progress? What is the key control?

The Business Outcome is the Key Control!

In this model, commitment is at the business outcome level,
not at the requirement level. The project is funded to achieve
an outcome and the requirements are allowed to flex in order to
make that achievement possible. The Product Manager, Project
Manager, Architect, and other key parties are now on the hook
to discover solutions that are both effective and economical.
Business outcomes should be measured at regular intervals
to determine if the project is meeting its business goals. Wait!
Measure regular business outcomes? That’s too late! The project
will be over before we can measure against the controls, right?
Wrong! Not if you are correctly using an agile feedback model.

AGILE FEEDBACK MO DEL

8

Funding Flow–

Measuring Progress

In order to measure progress towards the business outcome, we
must demand interim releases to production that allow us to
get objective data on the performance of this project! The only
measure that matters is actual incremental business results. This
flexible funding model is predicated on getting real feedback
and adjusting the product requirements in order to achieve the
business outcome. If we don’t deliver something, then we don’t
get the feedback, and we can’t make the pivots necessary to be
successful. In exchange for flexible funding, leaders need to demand
early and frequent delivery, and demand measurable operational
data that can be used to assess the business outcome and drive
financial performance. Without this, you have nothing more than a
waterfall project with a blank check! And here is where finance and
accounting can be drivers of business agility! By demanding early
and frequent operational data that can be used to justify continued
spending, the business achieves financials results sooner and gets
massively more visibility into the viability of projects than it ever
did before in its old ‘plan the work and work the plan’ model.

Monetize at the Feature Level

In order to make the effective trade-off decisions, our business
partners will need to get much better at understanding the
economics of the features that they are asking us to build. By this,
we mean that they need to understand that some features are
both high value and low cost and therefore they are clearly the
economic winners. Other features are low value and high cost and
are economic losers. Business is typically and traditionally of the “I
want it all” mindset and so we have our teams spend huge amounts
of time and money building too many features that turn out to
be economic losers. By packaging up the economic losers with
the winners into the same project, we lose insight into where the
real value is. We should insist that the business get much better
at monetizing at the feature level. The WSJF (weighted shortest
job first) technique can help here. WSJF is a technique that allows
the business to rank or compare the relative ROI of each feature
against each other so that we can see which features appear to
be the economic winners. Once we have down-selected to what
appears to be the most impactful features, we can do some basic
estimation in terms of team-sprints, the business-upside, and most
importantly, how we intend to operationally measure the business
upside. If we cannot operationally measure the desired outcome
in some way, then the feature should probably be cast aside.

What About CapEx?

Traditionally, capitalization and expense were managed
using waterfall phases with the early phases being expensed,
later dev-test phases being capitalized, and any work done
after deployment being expensed once again. In agile, we are
performing analysis, design, development, test, and fix all
simultaneously. Obviously, a phased approach will not work here.
But we can manage capex using other means. The most obvious,
and perhaps even more accurate than the traditional approach,
is to use the actual work items or tasks themselves. Using an
agile project management tool that tracks stories and tasks,
we can say that new feature/functionality story development
is capitalized, defect stories are expense, testing tasks for new
functionality are capitalized, etc. In this way, we can measure the
actual amount of work going towards expense versus capital.

In some cases, the organization may have capital versus
expense targets or ratios that they need to maintain. In
these cases, we could work backwards and give our product
owners “budgets” for capital and for expense. If this were
needed, we could say that, for example, 40% of the backlog
items can be expensed but the rest must be capitalizable for
example. In this way, we are engineering a financial outcome
by prioritizing our backlog in line with capex guidelines.

But things get more complex after we have an initial deployment
to production of an MVP or other minimal solution. If we continue
to add on to this minimal solution, is it capital or expense? If
the add-on work offers new or enhanced functionality then it
probably should be capitalized. If new work is maintenance/
defect-fix then it should be expensed. But some firms have
more rigid internal rules around this such as “any work done to
support the release after deployment is expensed” or “a new
software version release is synonymous with a project”. In these
cases, we may need to work with accounting to design smarter
(and more accurate) rules that are still in alignment with the
Generally Accepted Accounting Principles (GAAP). In these cases,
it can be helpful to put more fine-grained definitions around
the word ‘release’. For example, if we are deploying new code to
production every few weeks, is each of those new deployments a
new release? Deployment and release do not have to necessarily
be synonymous. For example, one could define a new version
release to specifically be the launch of major new functionality vs

9

The Middle Ground of Agi le Budgeting

“patches” which might only serve to deploy smaller changes. Both
result in the deployment of new code to production but they could
be treated differently for accounting purposes. It is not uncommon
for some firms to have major new-functionality releases that are
separate from smaller patch deployments. In this way, we can
treat each separately from an accounting perspective if needed.

The capex topic can be tricky but most auditors have by now seen
many of their customers go down the agile path and will have some
experience in how to handle these situations. The capex problem
is readily solvable if there are minds at the table that are willing
to explore solutions that both meet GAAP expectations and allow
us to solve the needs of our customers and business operations. A
key part of the solution is likely to be an agile project management
tool of some sort that we can use to tag or categorize stories and
tasks so that they can receive the most appropriate accounting
treatment. And the result should be more accuracy not less.

Tying It Up: It’s About The Time Value of Money

It is amazing that even the largest and most sophisticated firms
do not often focus sufficiently on the time value of money (TVM)
with respect to project work. Everyone should understand that
a dollar today is worth more than a dollar next year for a variety
of reasons. And yet, remarkably few organizations force project
investments to deliver dollars back to the business RIGHT NOW.

The financial investment advisory firm “The
Motley Fool” explains TVM this way.

“Time value of money is one of the most basic fundamentals in all of
finance. The underlying principle is that a dollar in your hand today
is worth more than a dollar you will receive in the future because a
dollar in hand today can be invested to turn into more money in the
future. Additionally, there is always a risk that a dollar that you are
supposed to receive in the future won't actually be paid to you.”

There are a couple of concepts here that we should explore
a bit more deeply. The first is that a dollar in hand can
be invested now and the second is that dollars you are
supposed to receive in the future may not materialize.

We typically invest in projects in order to be paid a return.
Projects are usually expected to reduce costs, increase
revenues, improve efficiencies, reduce risks, etc. This means

that most of our projects should be paying us back not only
for the cost of the project but additional gains as well.

Now, in most organizations, the demand for projects greatly
exceeds the funds and capacity available resulting in many
unfunded project requests. Imagine what we could do if
all of these investments could start paying us back sooner?
We’d have more money and we could fund more work and
get even more accomplished! The key is to force projects
to start to pay us back sooner! But how can we do that?

Agile and DevOps techniques give us the tools to accelerate
both deployment and payback. By focusing our efforts on a
few features that we believe are economic winners, and using
agile to design, delivery, and deploy those solutions quickly,
we can start to reduce costs now! We can start to bring in more
revenues now! This generates more money and it generates it
now so that we can start to make those additional investments
now, just as The Motley Fool said in the aforementioned quote.

But what if we make these deployments and we don’t see the
uptick in revenue or the downturn in costs? Well, this is where
the second part of the TVM definition comes in. As the definition
above stated: “there is always a risk that a dollar that you are
supposed to receive in the future won't actually be paid to you.”
By using early deployments, we can start to see that some of
these projects are not going to be able to pay us back! We can see
sooner rather than later that the economics just aren’t there. The
calculated upsides were faulty and our estimated costs were low.
Using agile delivery, we can see that we aren’t going to get paid
back and we can start to consider whether or not to kill the project.

The time value of money is one of the most basic elements
of finance, and yet most organizations do not adequately
focus on TVM. The result is that it is not uncommon for
projects to spend extraordinary amounts of money over the
course of multiple years only to deliver NO VALUE back to
the business in the interim. These projects often have long
payback cycles and are frequently bolstered by questionable
economics whose validity cannot be measured for years since
no interim deployments or payback is being required.

A more agile (and financially frugal!) organization would heavily
tilt funding towards those projects that can achieve positive
financial impact sooner rather than later. Focusing on the time

10

Funding Flow–

value of money metrics will force more frequent delivery of value,
lower risk, and allow more frequent measurement of project
economics. Working this way would allow us to make smaller bets!

So how do we do achieve these highly desirable
outcomes of smaller bets, lower risk, more frequent
measure of project economics, and positive TVM?

1. By favoring projects that have a plan to achieve faster payback
2. By funding projects based upon outcomes
instead of funding a set of requirements
3. By having our teams focus on economics at the feature level
4. By demanding early and frequent measurement

of actual business outcomes through early and
regular deployments of functionality

There is a middle ground between the current way that projects
are funded and the stable long term funding that the agile
community is recommending. Organizations can both keep their
projects and achieve far greater business agility, if they can adopt
these practices. Let’s be clear that we very much favor long-term
stable funding of value stream teams, but the project-outcome
funding model that we outline here can be a strong intermediate
step that most organizations can start to implement right now.

